18 research outputs found

    Wearable bioimpedance measurement for respiratory monitoring during inspiratory loading

    Get PDF
    Bioimpedance is an unobtrusive noninvasive technique to measure respiration and has a linear relation with volume during normal breathing. The objective of this paper was to assess this linear relation during inspiratory loading protocol and determine the best electrode configuration for bioimpedance measurement. The inspiratory load is a way to estimate inspiratory muscle function and has been widely used in studies of respiratory mechanics. Therefore, this protocol permitted us to evaluate bioimpedance performance under breathing pattern changes. We measured four electrode configurations of bioimpedance and airflow simultaneously in ten healthy subjects using a wearable device and a standard wired laboratory acquisition system, respectively. The subjects were asked to perform an incremental inspiratory threshold loading protocol during the measurements. The load values were selected to increase progressively until the 60% of the subject's maximal inspiratory pressure. The linear relation of the signals was assessed by Pearson correlation (r) and the waveform agreement by the mean absolute percentage error (MAPE), both computed cycle by cycle. The results showed a median greater than 0.965 in r coefficients and lower than 11 % in the MAPE values for the entire population in all loads and configurations. Thus, a strong linear relation was found during all loaded breathing and configurations. However, one out of the four electrode configurations showed robust results in terms of agreement with volume during the highest load. In conclusion, bioimpedance measurement using a wearable device is a noninvasive and a comfortable alternative to classical methods for monitoring respiratory diseases in normal and restrictive breathing.Postprint (published version

    Chest movement and respiratory volume both contribute to thoracic bioimpedance during loaded breathing

    Get PDF
    Bioimpedance has been widely studied as alternative to respiratory monitoring methods because of its linear relationship with respiratory volume during normal breathing. However, other body tissues and fluids contribute to the bioimpedance measurement. The objective of this study is to investigate the relevance of chest movement in thoracic bioimpedance contributions to evaluate the applicability of bioimpedance for respiratory monitoring. We measured airflow, bioimpedance at four electrode configurations and thoracic accelerometer data in 10 healthy subjects during inspiratory loading. This protocol permitted us to study the contributions during different levels of inspiratory muscle activity. We used chest movement and volume signals to characterize the bioimpedance signal using linear mixed-effect models and neural networks for each subject and level of muscle activity. The performance was evaluated using the Mean Average Percentage Errors for each respiratory cycle. The lowest errors corresponded to the combination of chest movement and volume for both linear models and neural networks. Particularly, neural networks presented lower errors (median below 4.29%). At high levels of muscle activity, the differences in model performance indicated an increased contribution of chest movement to the bioimpedance signal. Accordingly, chest movement contributed substantially to bioimpedance measurement and more notably at high muscle activity levels.Peer ReviewedPostprint (published version

    Analysis of time delay between bioimpedance and respiratory volume signals under inspiratory loaded breathing

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksBioimpedance is known for its linear relation with volume during normal breathing. For that reason, bioimpedance can be used as a noninvasive and comfortable technique for measuring respiration. The goal of this study is to analyze the temporal behavior of bioimpedance measured in four different electrode configurations during inspiratory loaded breathing. We measured four bioimpedance channels and airflow simultaneously in 10 healthy subjects while incremental inspiratory loads were imposed. Inspiratory loading threshold protocols are associated with breathing pattern changes and were used in respiratory mechanics studies. Consequently, this respiratory protocol allowed us to induce breathing pattern changes and evaluate the temporal relationship of bioimpedance with volume. We estimated the temporal delay between bioimpedance and volume respiratory cycles to evaluate the differences in their temporal behavior. The delays were computed as the lag which maximize the cross-correlation of the signals cycle by cycle. Six of the ten subjects showed delays in at least two different inspiratory loads. The delays were dependent on electrode configuration, hence the appearance of the delays between bioimpedance and volume were conditioned to the location and geometry of the electrode configuration. In conclusion, the delays between these signals could provide information about breathing pattern when breathing conditions change.Peer ReviewedPostprint (author's final draft

    Breathing pattern estimation using wearable bioimpedance for assessing COPD severity

    Get PDF
    Breathing pattern has been shown to be different in chronic obstructive pulmonary disease (COPD) patients compared to healthy controls during rest and walking. In this study we evaluated respiratory parameters and the breathing variability of COPD patients as a function of their severity. Thoracic bioimpedance was acquired on 66 COPD patients during the performance of the six-minute walk test (6MWT), as well as 5 minutes before and after the test while the patients were seated, i.e. resting and recovery phases. The patients were classified by their level of airflow limitation into moderate and severe groups. We characterized the breathing patterns by evaluating common respiratory parameters using only wearable bioimpedance. Specifically, we computed the median and the coefficient of variation of the parameters during the three phases of the protocol, and evaluated the statistical differences between the two COPD severity groups. We observed significant differences between the COPD severity groups only during the sitting phases, whereas the behavior during the 6MWT was similar. Particularly, we observed an inverse relationship between breathing pattern variability and COPD severity, which may indicate that the most severely diseased patients had a more restricted breathing compared to the moderate patients.This work was supported in part by the Universities and Research Secretariat from the Ministry of Business and Knowledge/Generalitat de Catalunya under the Grant GRC 2017 SGR 01770, in part by the Agencia Estatal de Investigacion from the Spanish Ministry of Science ánd Innovation and the European Regional Development Fund, under the Grants RTI2018 098472-B-I00 and PID2021-126455OB-I00, and in part by the CERCA Programme/Generalitat de Catalunya.Peer ReviewedPostprint (author's final draft

    Predicting 6-minute walking test outcomes in patients with chronic obstructive pulmonary disease without physical performance measures

    Get PDF
    Background and Objective Chronic obstructive pulmonary disease (COPD) requires a multifactorial assessment, evaluating the airflow limitation and symptoms of the patients. The 6-min walk test (6MWT) is commonly used to evaluate the functional exercise capacity in these patients. This study aims to propose a novel predictive model of the major 6MWT outcomes for COPD assessment, without physical performance measurements. Methods Cardiopulmonary and clinical parameters were obtained from fifty COPD patients. These parameters were used as inputs of a Bayesian network (BN), which integrated three multivariate models including the 6-min walking distance (6MWD), the maximum HR (HRmax) after the walking, and the HR decay 3 min after (HRR3). The use of BN allows the assessment of the patients’ status by predicting the 6MWT outcomes, but also inferring disease severity parameters based on actual patient's 6MWT outcomes. Results Firstly, the correlation obtained between the estimated and actual 6MWT measures was strong (R = 0.84, MAPE = 8.10% for HRmax) and moderate (R = 0.58, MAPE = 15.43% for 6MWD and R = 0.58, MAPE = 32.49% for HRR3), improving the classical methods to estimate 6MWD. Secondly, the classification of disease severity showed an accuracy of 78.3% using three severity groups, which increased up to 84.4% for two defined severity groups. Conclusions We propose a powerful two-way assessment tool for COPD patients, capable of predicting 6MWT outcomes without the need for an actual walking exercise. This model-based tool opens the way to implement a continuous monitoring system for COPD patients at home and to provide more personalized care.Peer ReviewedPostprint (published version

    A 36 µW 1.1 mm2 reconfigurable analog front-end for cardiovascular and respiratory signals recording

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThis paper presents a 1.2 V 36 µW reconfigurable analog front-end (R-AFE) as a general-purpose low-cost IC for multiple-mode biomedical signals acquisition. The R-AFE efficiently reuses a reconfigurable preamplifier, a current generator (CG), and a mixed signal processing unit, having an area of 1.1 mm2 per R-AFE while supporting five acquisition modes to record different forms of cardiovascular and respiratory signals. The R-AFE can interface with voltage-, current-, impedance-, and light-sensors and hence can measure electrocardiography (ECG), bio-impedance (BioZ), photoplethysmogram (PPG), galvanic skin response (GSR), and general-purpose analog signals. Thanks to the chopper preamplifier and the low-noise CG utilizing dynamic element matching, the R-AFE mitigates 1/f noise from both the preamplifier and the CG for improved measurement sensitivity. The IC achieves competitive performance compared to the state-of-the-art dedicated readout ICs of ECG, BioZ, GSR, and PPG, but with approximately 1.4×-5.3× smaller chip area per channel.Peer ReviewedPostprint (author's final draft

    Noninvasive assessment of neuromechanical and neuroventilatory coupling in COPD

    Get PDF
    This study explored the use of parasternal second intercostal space and lower intercostal space surface electromyogram (sEMG) and surface mechanomyogram (sMMG) recordings (sEMG para and sMMG para , and sEMG lic and sMMG lic , respectively) to assess neural respiratory drive (NRD), neuromechanical (NMC) and neuroventilatory (NVC) coupling, and mechanical efficiency (MEff) noninvasively in healthy subjects and chronic obstructive pulmonary disease (COPD) patients. sEMG para , sMMG para , sEMG lic , sMMG lic , mouth pressure (P mo ), and volume (V i ) were measured at rest, and during an inspiratory loading protocol, in 16 COPD patients (8 moderate and 8 severe) and 9 healthy subjects. Myographic signals were analyzed using fixed sample entropy and normalized to their largest values (fSEsEMG para%max , fSEsMMG para%max , fSEsEMG lic%max , and fSEsMMG lic%max ). fSEsMMG para%max , fSEsEMG para%max , and fSEsEMG lic%max were significantly higher in COPD than in healthy participants at rest. Parasternal intercostal muscle NMC was significantly higher in healthy than in COPD participants at rest, but not during threshold loading. P mo -derived NMC and MEff ratios were lower in severe patients than in mild patients or healthy subjects during threshold loading, but differences were not consistently significant. During resting breathing and threshold loading, V i -derived NVC and MEff ratios were significantly lower in severe patients than in mild patients or healthy subjects. sMMG is a potential noninvasive alternative to sEMG for assessing NRD in COPD. The ratios of P mo and V i to sMMG and sEMG measurements provide wholly noninvasive NMC, NVC, and MEff indices that are sensitive to impaired respiratory mechanics in COPD and are therefore of potential value to assess disease severity in clinical practice.Peer ReviewedPostprint (published version

    Role of age and comorbidities in mortality of patients with infective endocarditis

    Get PDF
    [Purpose]: The aim of this study was to analyse the characteristics of patients with IE in three groups of age and to assess the ability of age and the Charlson Comorbidity Index (CCI) to predict mortality. [Methods]: Prospective cohort study of all patients with IE included in the GAMES Spanish database between 2008 and 2015.Patients were stratified into three age groups:<65 years,65 to 80 years,and ≥ 80 years.The area under the receiver-operating characteristic (AUROC) curve was calculated to quantify the diagnostic accuracy of the CCI to predict mortality risk. [Results]: A total of 3120 patients with IE (1327 < 65 years;1291 65-80 years;502 ≥ 80 years) were enrolled.Fever and heart failure were the most common presentations of IE, with no differences among age groups.Patients ≥80 years who underwent surgery were significantly lower compared with other age groups (14.3%,65 years; 20.5%,65-79 years; 31.3%,≥80 years). In-hospital mortality was lower in the <65-year group (20.3%,<65 years;30.1%,65-79 years;34.7%,≥80 years;p < 0.001) as well as 1-year mortality (3.2%, <65 years; 5.5%, 65-80 years;7.6%,≥80 years; p = 0.003).Independent predictors of mortality were age ≥ 80 years (hazard ratio [HR]:2.78;95% confidence interval [CI]:2.32–3.34), CCI ≥ 3 (HR:1.62; 95% CI:1.39–1.88),and non-performed surgery (HR:1.64;95% CI:11.16–1.58).When the three age groups were compared,the AUROC curve for CCI was significantly larger for patients aged <65 years(p < 0.001) for both in-hospital and 1-year mortality. [Conclusion]: There were no differences in the clinical presentation of IE between the groups. Age ≥ 80 years, high comorbidity (measured by CCI),and non-performance of surgery were independent predictors of mortality in patients with IE.CCI could help to identify those patients with IE and surgical indication who present a lower risk of in-hospital and 1-year mortality after surgery, especially in the <65-year group

    The effect of walking on the estimation of breathing pattern parameters using wearable bioimpedance

    No full text
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Wearable bioimpedance is a technique proposed to estimate breathing parameters such as respiratory rate (RR). However, its potential application lies in clinical investigation of daily-life activities like walking. This study evaluated the effect of the walking interference on the estimation of breathing parameters. 50 chronic obstructive pulmonary disease patients performed static and active measurements during thoracic bioimpedance acquisition. The static measurements included respiratory airflow for reference. The active measurements were used to estimate the walking interference from bioimpedance, and the obtained signals were added to static measurements for comparison with the reference. Afterward, we applied four different preprocessing methods to remove this walking interference and the resulting signals were used to detect the respiratory cycles and estimate breathing parameters (inspiratory time, expiratory time, duty cycle, and RR). The methods performed differently in terms of accuracy and mean average percentage error (MAPE), showing the need for specific preprocessing for active measurements. Furthermore, the MAPE values in the RR estimation were close to 3 % indicating that breathing parameters can be accurately estimated during walking. Accordingly, the present study reinforces the applicability of wearable bioimpedance for respiratory monitoring. Clinical relevance- This study exhibits the suitability of wearable bioimpedance to estimate accurate breathing param-eters during walking activities.This work was supported in part by the Universities and Research Secretariat from the Generalitat de Catalunya under Grant GRC 2017 SGR 01770 and, GrantFI-DGR, in part by the Agencia Estatal de Investigación from the Spanish Ministry of Science, Innovation and Universities and the European Regional Development Fund, under the Grant RTI 2018 098472B-I00, and in part by the CERCA Programme/Generalitat de Catalunya.Peer ReviewedPostprint (author's final draft

    Relationship Between Heart Rate Recovery and Disease Severity in Chronic Obstructive Pulmonary Disease Patients

    Get PDF
    Chronic obstructive pulmonary disease (COPD) patients exhibit impaired autonomic control which can be assessed by heart rate variability analysis. The study aims to evaluate the cardiac autonomic responses of COPD patients after completing a conventional six-minute walk test (6MWT). Fifty COPD patients were included in the study, for which an ECG signal (lead II) was acquired by a wearable device, before, during, and after the test. We used the heart rate (HR) time-series to assess the heart rate dynamic during recovery. The heart rate recovery (HRR) marker was evaluated every 5 s after the 6MWT and showed different dynamic trends among severity groups. We compared the HRR among patient groups classified according to the GOLD standard. Significantly larger normalized HRR values (nHRR) were found in mild COPD patients (n=23, GOLD={1,2}; nHRR1=14.8±7.5 %, nHRR2=18.6±8.1 %) compared to those with more disease severity (n=23, GOLD={3,4}; nHRR1=9.3±5.8 %, p=0.002; and nHRR2= 13.7±6.7 %, p=0.041). The largest differences were observed around the first 30 s of the recovery phase (nHRR=10.8±6.6 % vs. nHRR=5.6±4 % p=0.001). Our results showed a slower recovery for the severest patients, suggesting that cardiac parameters like the ones we propose here, may provide valuable information for a better characterization of COPD severity.Peer ReviewedPostprint (published version
    corecore